发布日期:2024-12-20
浏览次数:1657
一、基本信息
博士,讲师,硕士生导师
请有志于从事人工智能海洋渔业学、遥感图像智能信息提取、机器学习/深度学习等领域研究的同学,包括但不限于攻读硕士学位、毕业论文/设计、大学生创新项目等,请通过邮箱bliu@shou.edu.cn先联系我。
二、研究领域与主要学术成果
主要研究领域人工智能海洋渔业学、遥感图像智能信息提取、深度学习,具体而言,包括但不仅限于:(1) 基于机器学习和深度学习的海洋遥感图像智能分析,用于水淹区域制图、潮间带环境监测以及船舶探测和识别。(2) 基于深度学习的渔场预报、渔业资源预测及渔汛预报。(3) 基于国产自主边缘计算芯片的人工智能模型移植、推理优化和迁移学习。
在National Science Review、Science Advances、IEEE TGRS、JGR: Oceans、CJFAS等国际知名高水平SCI期刊上合计发表论文21篇(一作6篇、通信作者9篇),出版中文专著1本、中文专著章节1章、英文专著章节3章。论文合计被引近1700次,其中2篇被引在300次以上、1篇被引在200以上,1篇被引在100次以上。两期获聘卫星海洋环境动力学国家重点实验室青年访问海星学者(2020-2021,2022-2023)。在MDPI Remote Sensing和MDPI Fishes期刊的人工智能海洋学、人工智能渔业学专刊担任客座编辑。
三、教育背景
1. 博士学位,上海交通大学,信号与信息处理,2009/9 -- 2015/6(导师:刘兴钊)
· 博士论文《极化SAR图像边缘与区域信息提取方法研究》,答辩委员会成员:单杰(美国普渡大学)、林家骏(华东理工大学)、郁文贤(上海交通大学),童小华(同济大学),王军锋(上海交通大学)
2. 访问博士生,法国巴黎高科电信学院,2012 -- 2013(导师:Florence Tupin)
3. 硕士学位,上海交通大学,信号与信息处理,2007/9 -- 2009/6(导师:刘兴钊)
4. 学士学位,上海交通大学,电子工程系,2003/9 -- 2007/6(top 5%)
四、工作经历
1. 讲师,上海海洋大学,海洋科学与生态环境学院,2024/1 -- 至今
2. 讲师,上海海洋大学,海洋科学学院,2020/9 – 2024/1
3. 师资博士后,上海海洋大学,海洋科学学院,2018/6 – 2020/8(合作导师:李晓峰)
4. 专职科研人员,上海交通大学,电子信息与电气工程学院,2015/12 – 2018/5
五、SCI期刊论文(按时间倒序排列,*表明通讯作者,列出的影响因子IF均为2023-2024年影响因子)
1. M. Xie, B. Liu(*), X. Chen(*), W. Yu, J. Wang. Short to medium-term forecasting of fishing ground distribution based on deep learning model. Canadian Journal of Fisheries and Aquatic Sciences. December 6, 2024. (IF = 1.9, WOS Q2)
2. G. Zheng, Y. Zhou, B. Liu, L. Zhou, H. Jiang, X. Wan, P. Chen. Difference-Focusing Fusion Decision Method: An Ensemble Learning Framework and Its Application in Improving Deep Learning Sea–Land Segmentation for Waterline Extraction in Synthetic Aperture Radar Imagery. IEEE Transactions on Geoscience and Remote Sensing. August 19, 2024. (IF = 7.5, WOS Q1)
3. W. Song, M. Zhu, M. Ge, B. Liu(*). A Shape-Aware Network for Arctic Lead Detection from Sentinel-1 SAR Images. Journal of Marine Science and Engineering. 2024. 12(6): 856. (IF = 2.7, WOS Q1)
4. M. Xie, B. Liu(*), X. Chen(*). Deep learning-based fishing ground prediction with multiple environmental factors. Marine Life Science and Technology. 2024. (IF = 5.8, WOS Q1)
5. M. Xie, B. Liu(*), X. Chen(*), W. Yu, J. Wang. Deep learning-based fishing ground prediction in asymmetric spatiotemporal scale: A case study of Ommastrephes bartramii. Fishes. 2024. 9(2): 64. (IF = 2.1, WOS Q2)
6. G. Liu, B. Liu(*), G. Zheng, and X. Li(*). Environment Monitoring of Shanghai Nanhui Intertidal Zone With Dual-Polarimetric SAR Data Based on Deep Learning. IEEE Transactions on Geoscience and Remote Sensing. August 8, 2022. (IF = 7.5, WOS Q1)
7. Y. Wang, G. Zheng(*), X. Li(*), L. Zhou, B. Liu, P. Chen, L. Ren, and X. Li. An Automatic Algorithm for Estimating Tropical Cyclone Centers in Synthetic Aperture Radar Imagery. IEEE Transactions on Geoscience and Remote Sensing. August 30, 2021. (IF = 7.5, WOS Q1)
8. C. Wang, G. Zheng, X. Li, Q. Xu(*), B. Liu, and J. Zhang. Tropical Cyclone Intensity Estimation From Geostationary Satellite Imagery Using Deep Convolutional Neural Networks. IEEE Transactions on Geoscience and Remote Sensing. March 26, 2021. (IF = 7.5, WOS Q1)
9. G. Zheng, X. Li(*), R.-H. Zhang, and B. Liu. Purely satellite data-driven deep learning forecast of complicated tropical instability waves. Science Advances, 2020. 6(29): eaba1482. (IF = 11.7, WOS Q1)
10. X. Li, B. Liu, G. Zheng, Y. Ren, S. Zhang, Y. Liu, L. Gao, Y. Liu, B. Zhang, and F. Wang(*). Deep Learning-based Information Mining from Ocean Remote Sensing Imagery. National Science Review, 2020. 7(10): 1584--1605. (IF = 16.3, WOS Q1)
11. B. Liu, X. Li(*), G. Zheng. Coastal Inundation Mapping From Bitemporal and Dual‐Polarization SAR Imagery Based on Deep Convolutional Neural Networks. Journal of Geophysical Research: Oceans, 2019, 124(12): 9101--9113. (IF = 3.3, WOS Q1)
12. H. Hu, B. Liu(*), Z. Zhang, W. Guo, and W. Yu. Superpixel generation for synthetic aperture radar imagery using edge-dominated local clustering. Journal of Applied Remote Sensing, 2018, 12(4), 045006. (IF = 1.4, WOS Q3)
13. B. Li, B. Liu(*), W. Guo, Z. Zhang, and W. Yu. Ship Size Extraction for Sentinel-1 Images Based on Dual-Polarization Fusion and Nonlinear Regression: Push Error Under One Pixel. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(8): 4887--4905. (IF = 7.5, WOS Q1)
14. L. Huang, X. Li(*), B. Liu, J. A. Zhang, D. Shen, Z. Zhang, and W. Yu. Tropical Cyclone Boundary Layer Rolls in Synthetic Aperture Radar Imagery. Journal of Geophysical Research: Oceans. 2018, 123(4): 2981--2996. (IF = 3.3, WOS Q1)
15. L. Huang, B. Liu(*), B. Li, W. Guo, W. Yu, Z. Zhang, and W. Yu. OpenSARShip: A Dataset Dedicated to Sentinel-1 Ship Interpretation. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(1): 195--208. (IF = 4.7, WOS Q1)
16. L. Huang, B. Liu(*), X. Li, Z. Zhang, and W. Yu. Technical Evaluation of Sentinel-1 IW Mode Cross-Pol Radar Backscattering from the Ocean Surface in Moderate Wind Condition. Remote Sensing, 2017, 9(8): 854. (IF = 4.2, WOS Q1)
17. B. Liu, Z. Zhang, X. Liu, and W. Yu. Representation and spatially adaptive segmentation for PolSAR images based on Wedgelet analysis. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(9): 4797--4809. (IF = 7.5, WOS Q1)
18. B. Liu, Z. Zhang, X. Liu, and W. Yu. Edge Extraction for Polarimetric SAR Images Using Degenerate Filter With Weighted Maximum Likelihood Estimation. IEEE Geoscience and Remote Sensing Letters, 2014, 11(12): 2140--2144. (IF = 4, WOS Q1)
19. B. Liu, H. Hu, H. Wang, K. Wang, X. Liu, and W. Yu. Superpixel-based classification with an adaptive number of classes for polarimetric SAR images. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(2): 907--924. (IF = 7.5, WOS Q1)
20. B. Liu, H. Wang, Q. Yu, X. Liu, and W. Yu. A novel ship detection approach in polarimetric SAR images based on a foreground/background separation framework. Chinese Journal of Electronics, 2013, 22(3): 641--647. (IF = 1.6, WOS Q3)
21. B. Liu, H. Wang, K. Wang, X. Liu, and W. Yu. A foreground/background separation framework for interpreting polarimetric SAR images. IEEE Geoscience and Remote Sensing Letters, 2011, 8(2): 288--292. (IF = 4, WOS Q1)
六、科研专著与专著章节
1. B. Liu, X. Li, and G. Zheng. Deep Convolutional Neural Networks-Based Coastal Inundation Mapping from SAR Imagery: with One Application Case for Bangladesh, a UN-defined Least Developed Country. In Artificial Intelligence Oceanography (Editors: X. Li and F. Wang). Springer Nature, February 2023. (章主笔)
2. 地球大数据支撑可持续发展目标报告(2021)“一带一路”篇. 主编:郭华东. 科学出版社, 2022. (编委,章主笔)
3. Big Earth Data in Support of the Sustainable Development Goals (2021) -- The Belt and Road. Editor: H. Guo. Science Press and EDP Sciences. 2022. (编委,章主笔)
4. 郁文贤, 计科峰, 柳彬. 电子与信息作战丛书: 星载SAR与AIS综合的海洋目标信息处理技术. 科学出版社, 2017年6月. (专著)
5. L. Huang, B. Li, B. Liu, W. Guo, Z. Zhang, and W. Yu. Ship Characterization and Analyses in Sentinel-1 Imagery Based on a Large and Open Dataset. in Advances in SAR Remote Sensing of Oceans (Editors: X. Li, H. Guo, K.-S. Chen, and X. Yang). CRC Press, December 2018. (专著章节)
七、近五年的主持项目:
1. 基于无监督深度学习的全极化SAR海岸带复杂环境水淹区域识别。国家自然科学基金青年基金(42006159)。24万元,2021.1-2023.12。(主持)
2. 海洋内波预报模型的样本库构建。自然资源部第二海洋研究所。14万元,2022.1-2022.4。(主持)
3. 人工智能海洋学相关课程教学中的课程思政元素梳理与在线教学活动设计。上海高校青年教师培养资助计划(重点推荐)。3万元,2022.1-2023.12。(主持)
4. AI海洋学前沿研究。一流学科系统建设-海洋科学高原学科建设。10万元,2021.8-2021.12。(子项目,主持)
5. 海洋人工智能算法研究(漫滩及湿地),中国科学院海洋研究所。15万元,2020.9-2020.12。(主持)
6. 基于物理-卷积网络混合模型的SAR海岸带水淹区域提取。中国博士后科学基金(2019M651474)。8万元,2019.5-2020.8。(主持)
八、学术兼职:
1. 卫星海洋环境动力学国家重点实验室青年访问海星学者(2020-2021与2022-2023),合作者:郑罡
2. MDPI Remote Sensing人工智能海洋学专刊客座编辑
3. MDPI Fishes人工智能渔业学专刊客座编辑
4. NSFC通讯评审人
5. 教育部学位中心学位论文评审人
6. IEEE TGRS, IEEE JSTARS, IEEE GRSL等期刊审稿人
九、建设并主讲的本科生专业课:
1. 《人工智能渔业学》(海渔2必修,2.5学分)
2. 《人工智能渔业设计》(海渔2必修,6学分)
3. 《人工智能海洋学》(海技海信方向限选,海资选修,2学分)
4. 《海洋大数据处理》(海技、海科专业选修,2学分)